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The steady two-cell viscous vortex solution of Sullivan (1959) is extended to yield 
unsteady two-cell viscous vortex solutions which behave asymptotically as 
certain analogous unsteady one-cell solutions of Rott (1958). The radial flux is a 
parameter of the solution, and the effect of the radial flow on the circumferential 
velocity, is analyzed. The work suggests an explanation for the eventual dissipa- 
tion of meteorological flow systems such as tornadoes. 

~~ 

1. Introduction 
The diffusion of an unsteady viscous vortex with zero radial and axial velocity 

components is well understood. Physical flows, however, are characterized by 
non-zero radial and axial velocity components due to the existence of boundaries 
such as a plane wall perpendicular to the axis of symmetry of the vortex. The 
work presented here is designed to obtain additional solutions containing radial 
and axial velocity components and to analyze their effect on the swirl and on the 
diffusion of the vorticity. 

The present stagnation point flow solution was developed during an analytical 
investigation of the axial flow reversal phenomenon in the core of a viscous vortex 
subsequent to vortex breakdown. First, this work is of mathematical interest in 
providing an exact solution of the full incompressible unsteady axisymmetric 
Navier-Stokes equations. Secondly, it  belongs to a class of solutions 

which has been found useful in modelling geophysical vortices (Morton 1966); 
here r and z are cylindrical polar co-ordinates, u, v and w are the radial, tangential 
and axial components of velocity respectively and t is the time. Solutions of 
this type do not permit any lateral expansion of the vortex core with height, 
they only satisfy the inviscid boundary conditions on the ground, z = 0, and they 
have the limitation that vertical velocities increase indefinitely in magnitude 
with increasing height. They may, however, be used to represent the core flow 
in the axial region where the boundary-layer effects of the ground and the lateral 
core expansion can be neglected. 

Oseen (2911) obtained the well-known unsteady solution of this class which is 

u = u(r, t ) ,  v = v(r,  t ) ,  w = zW(r,  t ) ,  (1.1) 

W(r , t )  = 0 (1.2) In  the case 

u = o ,  v = -  K c [  r 1 -  exp(-&)], w = o ,  
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K, determines the circulation and v is the kinematic viscosity. This solution 
describes the process of decay, through the action of viscosity, of a vortex 
filament which is concentrated a t  the origin a t  t = 0. 2nK, is the initial value of 
the circulation about the origin. 

Subsequently, Burgers (1940, 1948) and Rott (1958, 1959) independently 
obtained a steady solution for a viscous vortex embedded in a radially inward 
axisymmetric stagnation point flow over a plane boundary in the form 

where a is a constant related to the core diameter and po is the stagnation point 
pressure. 

A two-cell solution, characterized by axial flow reversal along and near the 
axis of the vortex, was obtained by Sullivan (1959): 

= - ar + 6“ [ 1 - exp ( -g)], 
r 

v = S [ H  r G ) / H ( m ) ] ,  

w =  2az[1-3exp(--$)], 

where H is defined by 

For large values of r ,  the velocity and pressure reduce to the values given by 
Burgers’ solution. This outer flow, consisting of spiralling inward radial flow and 
upward axial flow, is separated from an inner flow by a cylindrical stream tube. 
The inner flow consists of a spiralling flow which is downwards near the axis 
and radially outwards and then upwards near the separation surface. 

In  this paper, Sullivan’s solution is generalized to provide a two-cell solution 
in which the separation surface between the two cells moves radially outwards 
with a velocity related to the diffusion of the vorticity. 

The mathematical procedure is as follows. The pressure is eliminated from the 
radial and axial momentum equations to yield a third-order non-linear partial 
differential equation for the stream function. The solution to the steady-flow 
problem suggests the form of solution in the unsteady case. Certain constant 
coefficients in the steady-flow solution are replaced by suitable functions of time. 
It is assumed that the circulation is a function of a similarity variable which is in 
turn il function of r and t. This similarity variable is suggested by the form of the 
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solution for the stream function. These considerations reduce the problem to 
solving three first-order ordinary differential equations for the time dependent 
coefficients in the stream function. Sullivan’s steady-flow solution is obtained 
as a special case. 

It is also shown that, for large values of r,  the unsteady two-cell solution 
asymptotically behaves in the same way as the analogous one-cell unsteady 
solution considered by Rott (1958). 

2. Mathematical formulation of the problem 

axisymmetric flow of an incompressible fluid 
The analysis starts with the full Navier-Stokes equations for the unsteady 

together with the continuity equation 

au u aw -+-+- = 0. 
ar r az 

( 2 . 1 4  

These equations are to be solved by seeking a solution of the form given in (1 .1) .  
The boundary conditions to be satisfied are that the radial and circumferential 
velocities on the axis of symmetry are zero and that the circulation approaches 
a constant value, 2 7 7 4 ,  as the radial distance increases. 

For convenience, a function g(r, t )  is introduced such that 27rg is the outflux 
of fluid, per unit axial length, across a cylinder of radius r with its axis of symmetry 
coincidental with the z axis. Then 

u = g/r ( 2 . 2 ~ )  

and g = ag/ar = 0 when r = 0 (2.2b) 

in order to satisfy the boundary conditions for the radial velocity on the axis 
of the vortex. The continuity equation ( 2 . 1 4  then gives 

From the radial and axial momentum equations, (2.1 a) and (2.1 c) respectively, 
it is found that 

43-2 
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Now the right-hand side of (2.4) is a function of r and t only and so 

Thus (2.5) can be written as 

where F,(t) is determined by the outflux. Comparison of (2.5) and (2.7) provides 
a differential equation for g which can be simplified by the transformation 

x = r2 (2.8) 

to give - 

The circumferential momentum equation is 

(2.10) 

where 2rK is the circulation. 

co-ordinates to  (7, t )  co-ordinates where 
A similarity solution for K is now considered by transforming from ( r , t )  

4 = 7 ( r , t )  (2.11) 

is some as yet unspecified similarity variable. Then K is a function of 7 only, 
which is specified by the equation 

d2K dK 
dn2 dn -+a(y) - = 0, 

provided that a(7) satisfies 

(2.12) 

(2.13) 

The function a(4) is to  be obtained such that the boundary conditions for the 
circulation can be satisfied. In  terms of the (x , t )  co-ordinates, (2.13) reduces to  

(2)2 a27 a7 a7 4vx----2g- = 4vxa(7) - , 
ax2 at ax (2.14) 

A solution can now be obtained by the following steps. Equation (2.9) is 
solved for g and hence the radial and axial velocity components are given by ( 2 . 2 ~ )  
and (2.3) respectively. Since g occurs in the differential equation (2.13), the form 
of the solution for g may suggest the choice of the r dependence of the similarity 
variable 7 so that (2.13) will give 01. explicitly. Then (2.12) can be solved for the 
circulation K and finally (2.4) and (2.7) will give the pressure. 

3. Solutions for special cases 
(a )  One-cell solutions 

It is readily seen that one solution of (2.9) which satisfies boundary conditions 
(2.2) is g = x w ,  (3.1) 
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da 
at 2a2 - &Fl(t) = 0. (3.2) 

w = -2za(t). (3.3) 

-- where 

Hence from (2.3) and (2.8) 

In this case it is seen that the axial velocity is independent of r .  Thus the flow 
can be envisaged as taking place between two parallel frictionless planes per- 
pendicular to the axis of symmetry so that 

w =  0 on x =  0 and w = dH/dt on x =  H(t) ,  (3.4) 

where H is the time-dependent separation distance between the planes. Thus 
a( t )  and Ik;(t) are specified in terms of H(t).  One solution of equation (2.14) leading 
to Rott’s ( 1  958) unsteady one-cell solutions is 

where 

and a and P’ are constants. Hence, from (2.12) it is found 

where p’ = 4va,8. 

If H is constant, then Oseen’s (1911) unsteady viscous vortex, given in (1.3), 
is obtained. If H = Aexp (mt), 

where A and m are constants, then Burgers’ (1940) steady viscous vortex solution 
results. 

(b) Two-cell solutions 
A solution of the form 

g = a( t ) z+b( t )  [l-exp( -c ( t )x )]  (3.9) 

is now considered. Substituting this value of g into (2.9) and equating the co- 
efficients of xexp ( -  cx), exp ( - cx) and terms independent of x to zero yield 
the following equations for a( t ) ,  b( t )  and c ( t ) :  

dc 
- + 2ac + 4vc2 = 0,  
dt 

db 
- - 6ab - 2b2c = 0, 
at 

(3.10) 

(3.1 1) 

_-  2u2-&F1(t) = 0. (3.12) at 

The value of the similarity variable suggested by the form of g is 

‘I = c ( t ) x .  (3.13) 
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Substitution of (3.9) and (3.13) into (2.14) yields 

dc/dt+2ac 2b 
C2 cx 

- ---1-exp(-cz)] = 4va. 

Dividing by 4v and using (3.10) and (3.13) reduce the above equation to 

(3.14) 

Thus for a to be a function of 11 only, b must be a constant. This constant, b, is 
now taken as non-zero as otherwise the solution would reduce to the class of 
one-cell solutions already considered. Equation (3.11) now yields 

u = -$bc(t). (3.15) 

Equations (3.10) and (3.15) give 
ac 
at c-2- = - A  (3.16) 

where A = f ( 6 ~ - b ) .  (3.17) 

1 Integration gives c=- 
At +p' 

where ,u is a constant. 
Hence, from (3.13), (2.8) and (3.18) 

r2 'I=- 
At+/%' 

Equations (3.9), (3.18) and (3.15) yield 

g = -? 3 (z) At+p + b ( 1  - exp [z]). At+p 

Hence, using ( 2 . 2 ~ )  and (2.3),  

and 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

The circulation is now obtained by solving (2.12) where a is given by (3.14). 

K=K,-  xb/2v(?) (3.23) 
The solution is 

xb/2v(oo) ' 

where (3.24) 

From (2.4) and (2.5), the pressure is obtained given by 

where po(t)  is the pressure at  the stagnation point. 
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For large values ofr ,  the velocity components and pressure tend asymptotically 
to the corresponding values given by Rott’s unsteady one-cell vortex for which 

H(t )  = C(ht  +p)2@3A,  (3.26) 

where C is a constant. These asymptotic values are 

(3.27) 

(3.28) 

(3.29) 

Now when 

(3.17) gives 

b = 6~ 

h = 0. 

(3.31) 

(3.32) 

(3.33) 
21, 

Then if p = ; >  

(3.21)’ (3.22), (3.23) and (3.25) reduce to (1.5) giving Sullivan’s (1959) steady 
two-cell solution. Similarly, equations (3.27), (3.28), (3.29) and (3.30) reduce 
to (1.4) giving Burgers’ (1940) steady one-cell solution. 

h I 0’ 

p can always be arranged to be zero by effecting a change in the zero of the time- 
scale. Thus, in the remainder of this work it will be assumed that 

If 

p = 0, 
unless it is stated otherwise. 

Here, it can be noted that when 
b = 0, 

(3.17) gives h = 41, 

and (3.24) gives Z o ( s )  = 1 - e-8. 

(3.34) 

(3.35) 

In this case, (3.21), (3.22) and (3.23) reduce to (1.3) giving Oseen’s (1911) solution. 
In  order to simplify the discussion of the general solution, the variables will 

be made dimensionless in terms of v, K ,  and radial and axial length scales ro 
and zo respectively. Thus dimensionless variables 7, 5, 5) i i, V, W, 6, 6 and X are 
introduced, defined by 

(3.36,37) 

(3.38) 

(3.39,40) TO (E, W) = 2v - (U’ w), 
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- b  b = -  
2v' 

- A  A = -  
4v' 

- 
Then (3.17) becomes A =  1 - -  ',6 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

r 2  
and (3.19) becomes q=- (3.46) 

Equations (3.21), (3.22)' (3.23) give 
t [l - $61 * 

(3.47) 

- 

w = (x-) 3-b E t (1 - 3exp [--"I), t ( l - + b )  
(3.48) 

(3.49) 

Similarly, the asymptotic values given in (3.27), (3.28) and (3.29) become 

(3.50) 

(3.51) 

(3.52) 

4. Discussion of results 

It is seen from (3.46) and (3.47) that 

(a )  The radial and axial velocity components 

i i = 0  

7 = 3( 1 - e-q), when 

that is, when 7 = 2.821 = T ~ ,  say. (4.1) 

The flow can be regarded as being divided into two cells separated by the time- 
dependent cylindrical surface given by 

9 = 91. 

The radial velocity in one cell is in the opposite direction to that in the other cell. 
From (3.48) it is seen that there is another time-dependent cylindrical surface 
in the inner cell, at which the axial velocity is zero. This is given by 

7 = log, 3 = T ~ ,  aay. (4.2) 
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The effects of the radial flow parameter, 6, will now be considered with the 
help of figure 1, in which the similarity variable parameter, x, is plotted as 
a function of 6 using (3.45). When 

b > O  

i t  can be seen from (3.47) and (3.48) that the flow in the outer cell consists of 
radial inflow and axial upflow. In the inner cell there is radial outflow accom- 

- 

./ 0 1 2 
< .  

Radial outflow in outer cell Radial inflow 
in outer cell 

Oseen’s solution Sullivan’s solution 

FIGURE 1. The similarity variable parameter plotted as a function 
of the radial flow parameter. 

I 

3 2 
I I I 
1 0 1 i 

FIGURE 2. The stream surfaces when t = 3 and 6 = 2 for the two-cell solution 
(solid lines) and the corresponding one-cell solution (broken lines). 
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panied by axial flow which is either downwards or upwards according as 7 2 ?lo. 
These features are illustrated in figure 2 which shows the instantaneous traces of 
certain stream surfaces in a meridian plane for a specified value of 6. 

Now in order to satisfy the boundary condition that the circulation tends to 
a constant value as the radius tends to infinity, it is required that X >/ 0 (where 
p $. 0 when X = 0). Hence, from figure 1, there are no solutions when 6 > 3. As 
will be discussed later, a physical characteristic of flows for which 6 is greater 
than three is that the convection of fresh circulation into the vortex core due to the 
radial inflow of the outer cell would predominate over the process of the diffusion 

1 

-2 

FIQ~RE 3. The radial veiocity distribution when 6 = 2 for the two-cell solution (solid 
lines) and the corresponding one-cell solution (broken lines): Z = 1.5, 3 and 4.5, respec- 
tively, for curves (a), (b )  and (c) .  

of the vorticity. The limiting case for possible solutions, namely 6 = 3 corre- 
sponds to Sullivan’s steady flow solution. It may be noted that all flows for 
which 6 < 3 are unsteady flows. 

When 6 < 0 the flow in the outer cell consists of radial outflow and axial down- 
flow. I n  the inner cell there is radial inflow accompanied by axial flow which 
is either upwards or downwards according as 7 3 q,,. Thus the flow pattern a t  
any instant is similar to that shown in figure 2, the main difference being that the 
direction of flow is everywhere reversed. It should, however, be noted that the 
stream surfaces when l = 3 and 6 = - 2 will not quantitatively be the same as 
those represented in figure 2 for 6 = 2 since from figure 1, it is seen that X is not 
symmetric about the line 6 = 0. In  fact, for the former flow, the value of x will 
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be larger than for the latter flow, and so, for the former flow, the dividing cylinder 
between the two cells will expand at a greater rate. 

Figure 3 traces the development of the radial velocity with time from (3.47) 
with - 

b = 2. (4.3) 

FIGURE 4. The axial velocity distribution when 6 = 2 and 1 = 1 for the two-cell solution 
(solid lines) and the corresponding one-cell solution (broken lines): t = 1.5, 3 and 4.5, 
respectively, for curves (a), (b )  and (c) .  

As time increases, the bounding surface between the two cells expands radially. 
The non-dimensional radius of this bounding surface, PI say, is given as a function 
of time by 

reducing to  F1 = 0*970(f)* 
using (3.46), (4.1) and (4.3). 

For the same value of 6 and at  a fixed (non-zero) axial plane, figure 4 traces the 
development of the axial velocity with time from (3.48). Accompanying the 
radial expansion of the inner cell, is the expansion of the radius, non-dimen- 
sionalized as To say, of the cylindrical surface on which the axial velocity is zero. 
This is given by 

P; = To[ 1 - Q6] f, 
reducing to To = 0*605(f)*, 

using (3.46), (4.2) and (4.3). 
Figures 3 and 4 show that the maximum radial and axial velocities in the 

inner cell decrease as time increases. Also plotted in these figures are the corre- 
sponding asymptotic values of the velocities specified by the appropriate one-cell 
solution of Rott given in equations (3.50) and (3.51). 

It has already been observed that the maximum value of 6, which yields 
a solution satisfying the boundary condition for the circulation at  infinity, is 
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three. In  this case the solution is independent of time with the bounding surface 
between the two cells maintained a t  a constant radius. This steady motion is 
possible because the diffusion of the vorticity due to viscosity is balanced by 
the convection of fresh circulation from outside the vortex core due to the radial 
inflow. When 6 < 3 this radial inflow from the outer cell is reduced thus causing 

1 

0 

FIGURE 5.  The radial velocity distribution when 6 = 1.5 for the two-cell solution (solid 
lines) and the corresponding one-cell solution (broken lines): t = 1.5, 3 and 4.5, respec- 
tively, for curves (a),  ( b )  and ( c ) .  

the diffusion process to predominate. This results in unsteady flows for which 
the inner cell expands with time as already described. As 6 decreases, so the 
diffusion process becomes increasingly predominant with the result that if the 
graphs for the radial and axial velocities for two differing values of 6, but a t  the 
same time, are compared, then it is seen that the inner cell for the lower value 
of 6 is expanding a t  a greater rate than for the higher value of 6. Comparison of 
figures 3 and 5 illustrate this. 

( b )  The circumferential velocity component 

A typical circumferential velocity distribution for any value of 6 and at, any time 
consists of an inner core region in which the swirl velocity increases from zero on 
the axis of symmetry to a maximum value and for which the circumferential 
flow resembles that due to tt rigid body rotation. Outside this core region the 
swirl velocity decreases and tends asymptotically to the value given by a potential 
vortex. As time increases the vortex diffuses with the result that the swirl a t  all 
finite radial positions decreases and the radial position of the point of maximum 
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swirl increases. These general observations are illustrated in figures 6-8 in which 
the circumferential velocity is plotted using (3.49) for three values of 6. For 
each value of 6, the swirl is plotted a t  three different times. For each of these 
curves, the corresponding circumferential velocity distribution curve for the 
Oseen vortex, 6 = 0 is also plotted for purposes of comparison. 

0 1 2 3 4 

r 

FIGURE 6. The circumferential velocity distribution for the two-cell solution for which 
6 = 2 (solid lines), the corresponding one-cell solution for which 6 = 2 (broken lines of 
type - - - - - )  and for the Oseen solution for which 6 = 0 (broken lines of type -.-.-): 
2 = 1-5, 3 and 4.5, respectively, for curves (a),  ( b )  and (c). 

The effect of the radial flow on the swirl may be discussed with reference to  
figure 6 in which 6 = 2. At any time, the effect of the radial inflow in the outer cell 
is to  increase the swirl in the outer cell over that pertaining t o  the Oseen vortex 
at the same radius and time. On the other hand, the radial outflow in the inner 
cell has the opposite effect and so gives a lower value of swirl than would pertain 
for the Oseen vortex. This results in the two-cell velocity profile becoming con- 
cave upwards. When 6 = 2 the point of intersection of the circumferential 
velocity distribution curve with the corresponding curve at  the same time for 
the Oseen vortex corresponds to  the radial position a t  which ;ii = 0 at  that time 
given in figure 3. These latter radial positions are indicated in figure 6 by short 
vertical strokes. The short vertical strokes in figures 7 and 8 have similar mean- 
ings. Also plotted in figure 6 is the swirl distribution for the corresponding one-cell 
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0.6 

t 0.4 

0.2 

0 1 2 3 4 
- 
r 

FIGURE 7. The circumferential velocity distribution for the two-cell solution for which 
b = 2.5 (solid lines) and for the Oseen solution for which 6 = 0 (broken lines): t = 1.5, 3 
and 4.5, respectively, for curves (a), (6) and (c). 

0 1 2 3 4 
- 
r 

FIGURE 8. The circumferential velocity distribution for the two-cell solution for which 
b = 1.5 (solid lines) and for the Oseen solution for which 6 = 0 (broken lines) : t = 1.5, 
3 and 4.5, respectively, for curves (a) ,  (6) and ( c ) .  
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unsteady solution of Rott when f = # given by (3.52). As is expected, since there 
is radial inflow throughout the vortex, the swirl at all radial positions is higher 
than that associated with the two-cell or Oseen vortices. This characteristic 
holds for all time and for all values of 6. 

With reference to figure 7, it is seen that for a larger value of 6, the inflow process 
in the outer cell predominates over the outflow process in the inner cell with the 
result that in the outer part of the inner cell the swirl is greater than that for the 
Oseen vortex. This is due to the viscous shearing in the circumferential direction 
across the surface dividing the two cells. With reference to figure 8, it can be 
seen that the reverse of this phenomenon occurs when 6 < 2. 

5. Conclusions 
The above work suggests an explanation for the eventual dissipation of tor- 

nadoes and similar meteorological phenomena as represented by Sullivan’s steady 
solution. An essential feature of the steady two-cell solution is that the reduction 
in circumferential velocity a t  any radius due to the diffusion of the vorticity 
should be balanced by the circumferential velocity increase resulting from the 
inwards convection of fluid with higher angular momentum. Now as soon as the 
radial inflow ceases to be maintained the diffusion process will predominate thus 
causing the magnitudes of the swirl velocities to decrease with time as the vortex 
diffuses. Even for a value of 6 just less than three, the unsteady solution will hold 
leading to the eventual dissolution of the vortex with time. As has been discussed 
by Morton (1966), the axial flow (and hence by continuity the radial flow) can 
be regarded as controlled by thermal effects yielding buoyancy forces. This pro- 
vides a possible basis for the choice of 6. 

A noteworthy mathematical feature of the present work is the way in which 
the exact choice of the similarity variable is left until towards the end of the 
solution and that it is found to vary linearly, passing through the values it would 
have for the Oseen and Sullivan vortices. 

The author is indebted to  Professor N. H. Johannesen in whose department 
this work was done and to Dr I. M. Hall under whose guidance this paper was 
produced. During the course of this work the author was in receipt of a Research 
Studentship from the Science Research Council. 
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